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LSUMMARY

The iteration equations for a simplified solution of the noplinear
compressible-flow equation are developed and applied to two .profiles,
the ellipse and the Kap.lamsection. Limitations imposed on the solu-
tions by simplifications in the differential equation and the boundary
conditions are discussed. The Velocities near the midchord, the “criti-
cal and potential limit free-stresm Mach numbers, and the extent of
isentropic supersonic regions are calculatedto four approximations -
for the Kaplan section and to six approximationsfor the ellipse. The
development of the iteration equations and the presentation of the “

‘ results are made in conformity with the K&r&n transonic shilarity
law and comparisons are made with other solutions.

.

INTRODUCTION

Because of its nonlinear nature, the partial clifferential equa-
tion that describes the flow of a perfect compressible fluid has not
yielded completely to any method of solution so far advanced. In 6
fact, in such methods as the iteration procedures and the variational
method (reference 1), it is not even attempted to find a closed-form
solution or the general term of a series exp-ionj rath’&r,a finite
(and usually sma12) nuniberof terms of a series expansion are obtained.
Unfortunately, in such cases, whereas more snd more terms are required
as compressibility effects become more prono”mced, the difficulty of
securing the higher terms becomes inordinately greater. Although the
difficulties of nonlinearity may be overcome by a transformation to “
the hodograph plane and the choice of a convenient gas law (refer-
ence 2], a new problemarises in the solution of any boundary-vdue ,
problem because of the distortion of the boundary.

The solutions by iteration me begun by expanting.thevelocity
potential as a series in terms of some flow psrameter; it is then pos-

. sible t? determine each term from those’wMch precede it by sol- a

-,, .
0

u .“. .;\,
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linear equation. Whenever the flow is over a thin body at relatively
high speeds, it is preferable to expand the potential in terms of some
parameter characteristic of the body, such as thickness ratio, camber
coefficient, or angle of attack. The first term of the solution is a
constant representing the undisturbed flow and the second is the well-
known linearized or small perturbation compressible flow (Prandtl-
Glauert solution). The procedure for obtsining successive terms is
outlined by Ackeret (reference 3) and extended by Kaplan (reference 4)
who applies it to a hmp with no stagnation points end to a circular-
arc profile. The higher-order terms were shown to be of greater con-
sequence as the Mach ntier increased.

Recently Perl and KLein (reference 5) ap~lied the Prandtl-Ackeret
procedure, wtthout specifying beforehand the parameter of expansion,
to flows about thin bodies at transonic speeds. In their analysis,
the flow equation is transformed to a new set of coordinates in lThich

it is effective~ expanded ti powers of ~2

~ the tramo~c1r&~2’ “here % iSthe free-stream llachnumiber. (P2 +0), the

lowest order terms in ~2 are dominant, and the transonic part of the
flow equation is easily extracted.

“

7

5e resultlng trs.nsonicequ tion does not of itseM preclude size-
able perturbations as long as ~8 is chosen sufficiently close to
zero; however, the Perl-Klein process uses the customsry small.pertur-
bation boundary condition, so that the solution of the complete prob-
lem - differential equation and boundary conditions - is termed the
transonic limiting solution, limiting in the sense of Mach number near
umity ~a geometric parameter near zero. This limiting nature of the
solution is furth~ emphasize! by the form of the expansion psrameter,
TThiChis found to be simply KarJ&’s transonic similarity parsmeter
(reference 6}, a quantity which conibinesthe three definitive character-
istics of the flow: the ratio of specificheats {that is, the type
of gas), the free-stream Mach nuuiber,and the geometric psmameter.

Although the iteration process greatly facilitates the solution
of a nonlinear problem by substituting for it a series of Mnear prob-
lems, it, in turn, raises the difficult question of convergence of the
series solution. me present analysis was made at the I’WMijewis lab-
oratory to extend the calculations necesssry to estimate the convergence
of the iteration process of reference 6 where it is ap_J13.edto two
profiles, the ellipse and the Kaplem section. In particular, it will i
be found that the successive approximations suggest convergence not
only of completely subsonic flows but also of some isentropic mixed
flows. -

There has been some dispute concerning the stability of the~second
type flow (see the r&m= of these discussions by Sears, reference 7};
one of the latest contributions is a stability investigationby Kuo

,
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(reference 8), which indicates that decelerating transonic flows are
. unstable for a certain type disturbance. The result of the instability

is the formation of a terminal shock in the supersonic region, with a
consequent asymmetry. Some British measurements (references 9 and 10),
however, indicate that small supersonic.regionsnot terminatedby shock
waves may exist, or if shocks do occur, it is possible that they may
“not change the flow greatly from the isentropic pattern, provided that
the free-stream Mach number is only sl@lrH.y greater than critical.
The isentropic mixed flows are therefore dealt with herein under the
assumption that they are indicative of the nature of some real flows.

Another unpleasant feature of iteration methods, in addition to
the question of convergence, is the large amount of labor involved. In
obttining the higher approximationsby the present method, it is con-
venient to make certain simplificationsin the differential equation
so that the labor does not become too great. The justificationfor
such changes and the limitations they impose on the solution till be
discussed u they arise.

sMALL—PER~ ON ‘I!RANSomc I?Low

In reference 5 it is shown that the partial differential equation
. governing two-dimensional, irrotational, compressible flow msybe writ-

ten

(1).
where

. %

rM .

.

1-%2
perturbation potential

ratio of specific heats of the gas

free-stresm Mach number

%2 (1 + +/)

-. . ..- ...— — - . . ..-_ —__ _ —.. -———. —— —___ .. . . . ____ . . .
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and the free-stream velocity has magnitude unity and the direction of
positive x. (A complete list of symbols is given in the appendix.)
If the flow is over an isolated bod.ywhose surface is defined by

.

y=’c g(x)

where ‘r is the thickness ratio, the %oundary conditions on the per-
turbation potential sre

~y= ‘(1 + ~x) &(x) at y= T g(x)

}.

(2)
qx=~=o at x2+@==

For purposes of solution, it is desirable to write the second-order
terms of equation (1) in normal form, as maybe accomplishedby the
Prandtl-Glauerttransformation. If the transformation is modified
slightly, however, the coefficient of a nonlinea te- of the same
order in 132 also becomes independent of flow parameters. The modi-
fied transformation is

x.x

rM’
F(x,TI)=zQ(X,y)

P

and it transforms the problem consisting of the differential equation (1)
and the boundary condi~ions (2) into

..

(4)
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Fx=Fq=O’at #+q2/~2=

(5)

m (6)

coefficient .rJp2 ofI Figure 1 is the reciprocal of’the transformation
equation (3).

N4
ol A transition is now made to tlzesmall-perturbationtransonic prob-

lem. For ‘trausonicspeeds, the parameter 132 approaches zero so that
the right side of equation (4) maybe neglected. Because of the non-
linearity of the right side, omission of these terms is especially
justified if the perturbations are small. If the body consideredis
thin (1>-) and there are no ’stagnationpoints, qx~<l and’the

velocity ~ maybe neglected in boundary condition (5}. For flows in
which stagnation points occur, the effect of these stagnation points
is assumed negligible in the region of interest in the flow field.
Furthermore, in boundary condition (5), because the product ~ is a
very small number and because (as will be shown) the solution for
equation (7}, which follows, has no singularitieson the x-axis, it -
is assumed that the condition (that the velocity normal to the body is
Zero) maybe made on the x-axis rather thau on the body itself. This
assumption is justified in reference 5. Consequently,the small-
perturbation transonic flow problem is definedby

,

L!

(7)

(8)

(9)

For values of Fx< ~, the flow equation (7) is elliptic snd for

Fx>~ it is hyperbolic. In-figure 2 the psrabolic value of the per-

B2turbation velocity, Qx = — (or Fx = i], is compared with the excess “
2r~

of the ,criticalvelocity over free-stream velocity, that is, the pertur-
bation velocity at which a flow becomes locfiy sonic, as calculated

. from the Bernoulli equation. For such values of ~ for which the two
. curves substantially agree, the differential equation (7) may be expected

to describe mixed flows properly. The ~eement
range 0.9 < ~ < 1.1, which is approximately the-—

is acceptable in the
range of accnracy which

.. —..— .—-
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would have been suggested by equation (4). It is also’observed at this “
point that if the error in the boundary condition (8} is to be limited
to 10 percent as compared with the exact boundary condition (5), it is

m

necessary that gx < ~. Thus an examination of both the differential

equation and the boundary condition indicates that flows in the transonic
domain willbe described sufficiently accurately only if they lie in the

The flows to be solved herein will be limited to those about bodies
which are symnetric about the x- and y-axes. A limitation to subsonic
free-stresm Mach numbers is also necessary in order that the trans-
formation (8) does not become imaginary. The results of the present
method for high subsonic speeds can be applied, however, to slightly
supersonic free-stresm flows for which the detached shock wave is far
ahead of the body and the Mach nmikr downstrefi of the shock is as
much below unity as the Mach number upstresm is above unity. In this
sense, the analysis is applicable to the entire range of transonic
velocities.

n

ITERATION l?iOCESS

For convenience in describing the bow, a transformation is made
to elliptic coordinates, one of which is cyclic and can indicate posi-
tion around the circumference of the body. These coordinates are com-
pared with cartesian coordinates in figure 3. The equations defug
the transformation me

()where J ~ is the
S,t

x= cosh S COS t (lo)
,

v =Sinhssint (u}

cosh2 S - COS
2t =Sinhzs+sinzt (12]

Jacobian or functional determinant of the

x,y-coordinateswith respect to s and t. The reciprocal of the
Jacobian of the transformation is plotted.in figuxe 4 aE a function
of t for seversl values of s.

The first derivatives of the potentisl

Fx= (Sillh S COS t Fs - cosh S

F~=(cosh ssint Fs+sinhs

in the new system are

-1
Sillt Ft)J

COB t Ft}J-l

(13)

(14)

— .— -— ————.———. .—— . ..—
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which become at the @s of the body

Fx=-~Ft
sin t

l–
‘n =-E’Ssin t

Substitution of these into the boundary

Boundary condition (9) becomes

I?s=Ft=()

condition (8) yields

s = o

I

7

(15)

(16)

(17]

s== (18}

An exact transformation of the flow equation (7) would result in
the inverse Jacobian appearing in the nonlinear term, and it wouldbe
necessary to expand it in a Fourier geries before employing a method

. of solution involving the separation of variables. The process used
herein would then require the solution of an infinite number of ordinary
differential equations. In order to simplify the analysis and to reduce
the computationalwork that would ordinarily accompsny such an expan-
sion, only its first or constant term is retained. That is, in the
transformation of equation (7] to elliptic coordinates,the Jacobian
is set equal to 1, TTkkh is the first term-in its expansion about the
point s = o, t=Yc/2. Of course, this simplificationwill restrict
the region in which the equation is valid. A further restriction on
the size of the region of velidity is made by restricting the calcula-
tions to velocities on or near the surface of the bodyj thus s = O in
the differential equation.

If the relation

~a equations (13) ~d (14}
used, equation (7} with the

and

for the derivatives of Fx and I’q are
appro-tions

J= 1

Sinhs”o

cosh S =- 1

—.-. .-—.. ———— ..— —.. . .— —-—_ ______ ____— —.— _____ _. ..__ -.
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may be written

F~~+Ftt=- 2 s~2* Ft $ (Sfi t %)

=- 2 sin% l?#tt - 2 sin2t COS t FtFt (19)

This equation is proposed for use as a description of the flow in a
region about the origin whose boundary is set by the criteria

“1J-l -

I

1 < 0.10 ~d s ~.oml. Such a region in the xq-plane is sho~m
! in figure ~, where for comparison a 10-percent-thick (in the xy-plane)

Kaplan section is included as a typical profile. The length of the
rectangle is seen to be about 0.3 chord.

.

With the change in the region of validity of the differential
equation, there must be a change in the boundsry conditions to corres-
pond to this region. The surface boundary condition (7) may be
retained as is; therefore only the outer boundaries (dashed rectangle
in fig. 5) of the region lack boundary conditions. As a substitute
for conditions on these boundaries, the boun~ condition (18) at
infinity is taken aa a guide to postulate that, in the restricted
region, both Fs and Ft must decrease with increasing s. The fav-

orable comparison with more complete solutions shows that this con-
dition prescribing
sufficient. These

The method of
ferential equation
of monotoneity in
infinite series

monotonic character of the potential derivatives is
comparisons are made in subsequent sections.

.

solution of the problem, as formulated by the dif-
(19),,the boundary condition (17), and the condition
s, is to write the transformed potential F as an

123
F= F+F+F+. . . (20)

where it is assumed that the succeeding terms become pro~essively
smsXLer at such a rate as to inmxre convergence of F and its deriva-
tives. Definition (20) is placed in the flow equation (19), which is
then arranged as follows:

.

.-
.

.

.

.

———— . . —————- .—- — — —. .
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1 1
Fss + Ftt

2 2
+F~~ + Ftt

33
I-F~~+ Ftt

.

.

.

.

9.”

0

11 11
- 2 sin3t FtFtt - 2 sin2t COS t FtFt

21 12 12
. 2 sti3t(FtFtt +l?tFtt) - 2 Sill% COS t 2 F#t

. .

.
I

●

. . .

n-1 V n-v n-1 V n-v
- 2 sti3t ~ FtFtt - 2 8in2t COS b ~ FtFt

V=l . *1 ..
., .
. .

“ (21)

This arrangement indicates that the equation should be divided for Pur-
poses of iteration into a sequence of‘equationseach corresponding lo
one line of equation (21). In this way all terms which have
total superscript value are grouped together; this procedure
be seen equivalent to separating out terms of the same order

similarity parameter.

the same
will later
in the

The boundary condition on the body is SJ.SOdivided in a

way amng the terms in the series solution. The first term
the total contribution: ,

1 a-M
Fs =-—

~3 % s =.0

particular
1
F makes

(22)

whereas the boundary conditions for all other terms sre homogeneous:

g =’0 “s= o n>2— (23)

The condition of monotoneity requires that all $8 ad ~t are monotone
decreasing in s.

1
FIRST APPROXIMATION,F

The first approximation differs from subsequent approximations in
that it requires the solution of the honmgeneous Laplace equation (first

..— —-.. ...— ..—. ... . . . . ____ __. —_. . . . ... . . ._ ____ ____ -_
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line of equation (21}) with a
Higher appro-tions, involve

●
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nonhomogeneous ?Ioundsrycondition (22).
the solution of nonhomogeneous, or Poisson, ,

e@ations with homogeneous boundary conditions. For this reason and
to obtsin the necessary start in the iteration procedure, the first
approximation is treated separately.

The solution of this first iteration, which takes account of the
monotoneity of the derivatives and of t as the cyclic-coordinate,is

1=
F = Z e-ks (uk cos kt + % sin kt) (24)

k=l

Before this form is introduced tnto the boundsxy condition (22), the
function g (O,t] is expanded into a Fourier series and written

g (ojt) = Z8jSti~t (25)
3

In conformancewith the restriction to bodies which are synmetric about
the y-axis and about which there is no circulation, no cosine terms
appesr in the expansion. The index j is limited to odd values
because of the

SiOIIS (24) and
to

=

symmetry of g about

(25) into the boundary

t=+. The introduction of expres- .

condition on the body (22) leads

~rM -

~ k(Uk COSkt+U.)k Stikt}=— — Z jbj COS jt (26)
k=l P3 3=1

j Oaa only

It follows ‘that
.

(27}

The nature of the

‘ k Odd Ofiy

1 ~rM
dependence of F on —

~3 ‘ a quantity conibining

the entire dependence of the first appromtion on the parameters of
the flow (reference 6}, has the consequences immediately observed from
equation (21) that

.

P

_— ———— —— . —---- .—— —.. .
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2

()

~rM 2
F= —

B3

3

()

~rM 3
F= —

$3 ‘.
. .

. .

()
n

n %rM
F. —

P3

The quantity

%rM
K=—

P:

(28)

is recognized as the similarity psrsmeter of reference 5, and reduces
to Kar&n’s similarity parwneter (reference 6] as ~ ~ 1. Hence, ~

previously claimed, equation (21) is the ordering in powers of K with
respect to this parameter. The similarity parameter is plotted a8 a
function of ~ for various % in figure 6, which is reproduced from
reference 5.

nn
Writing F a & gives the perturbation potential, by the trans-

formation (3), as

(1234Q’: f+fK+fK2+:. .
)

[

m
T -kss—

z %ce ) 1
Coskt +f%+f3K? +...

P
(29)

k=l

The first term inside the parenthesis represents an incompressible flow.
Hence, for very smdll values of %, for which K is also small, the
transonic potential (29} reduces to the l?rsadtl-Glauertrule.

I!IGHERAPPROXIMATIONS

n
Inasmuch as all the F beyond the first satisfy the same general

form of differential equation and have the ssme boundary condition, it

— . .—. . . . ~— .— -—= —.. —.-——— —. .:_._—_ — -.—-. .——
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n

is possible to treat the general form of. F rather than each approxi-

mation separately. In the fofiowing discussion, an induction argument
will be used to show that every term in the series for the transformed

.

potential has the form

,

(~+ ~s + imsz + . . . )e-ps cos rt

. (30)

r odd only

In the expansion (equation

are constants and v is the number of terms

(25)) of q(t), the function characterizing
the shape of the body. The main part of the argument iS to sh~ t~t
if equation (30) is true for a13. X c n, then it is also true for
A = n.

From equation (21), the differential equation satisfied by any
n

term F (n > 1) is

n-l V n-V n-1 v n-v

;ss+;ti=- Zsin%z FFV=l t tt - 2 sin2t COS t & FtFt (31)

v n-V
Use of the postulated form (30) for F‘ and F leads to the expan-
sion for (31},

.

.

.

— .—.
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IN
4
m

V(I.L+3](n-V}(p%) v(w+3) (n-v}(p+?i}
-3 -3 -3 -3 ‘
2“ z z 2’

ma p=l k=l r=l

v v

[

-(p+m)s 2
e (-3kr -kr} cos (k+r+l) t + (-3kr2+lm) cos

(31m2+kr) cos (k-r-l)t + (31m2-ti) cos (k+r-l)t+

(h+kr2] cos (k+r+3)t + (ti-h2) COB (k+r-3)t+

1(-kr+ti2) cos (k-r+3)t + (-h-lm2) coe (k-r-3)t

The right side of

in.gthe constants

s, and cosines of

k, r odd only

the foregoing equation is the sum of
v v v

angles of multiple
summations have been accomplished and
powers of s, exponential in s, and
will.be

n(~+3) n(p+3_)

., powers of s,

t. Accordingly,
regrouping made
multiples of t,

-3’ -6 n n
,;ss +~tt =Kn Z 2 (%3 + s~j + S$hj + . .

h=l j=2

h

h odd OIdy

If a solution ,

n(~~)

;=Kn
.

-3 n
~ (S) COS ht

:

. . .}

(k-r+l)t +

(32)

products involv-

exponentials in

after sll five
accord3mg to
the equation

.) e-jscosht

(33)

.

(34)

h Odd Ofly

.–– ———. . .._. — -- —— .—____ _____ ______ ——.
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.

is assumed, the coefficient of each harmonic term in (33) must vanish.
Thus

.

n(p+3}
~2 n P

-6 n n n

~%(s) -h ~(s)= ~ (~j + s~j + s2Chj + . ● ●) ‘-ss
j=~

(35)

The particular integral of this equation is

n n e-’js
~Be-hs

ph= 2 ~jj2h2—- +
J+h - 2h

.

(36)

a summation over all values of j
n. n

Here the notation Z refers to
j#h

except j = h. The complementaryfunction is ~e-~, where ~ may

be found from the boundary condition on the body (23):

()&-h~+—
ds s=o =

o n>z— (37)

o Then

.— .—-— ———-..
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n

15

n

()

~h -hs n
qh=~ &~=Oe + ph

,

n(p+3)

where

ilj=~ [-
n n n

+ !hj+%jfi+chj
6? +2h2

j+h ? ‘h
(~2_h2)2 + “ “

n

)
24j2~j+””o
j -h

n

‘m =
-:m &-+... (39)

.- —- -— —.. — ..— —— .-—. —. .. —-—.._. _.— .—
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(The maximumvalue of h for any n in equations (38] and (39) is
n(p+3)-3.] Finally, if equation (38) is placed in the assumed form (34),
the Rth approximationbecomes

(40)

h Odd Otiy

which is exactly the form postulat~in equation (30).

It has been shmn that if ~ has the form (30) for dl v < n, it
will also have that form for v = n; there’remains only to test this
form on a particular appro-tion in order to complete the induction
proof. If the second approdmation is taken to correspond to the #
nth approximation of the proposition, a co~arison ‘ofall previo~
approxinwkicms (equation (27), @ this case) indicates that the nth
(secmd.) and, hence
the form (30).

, all approxhations subsequent to it mtit obey
The fact that the method of solution for the first

ayproximtions differs’from that of subsequent approximations does
not interfere with the argument.

,.

The actual mechanics of the iteration process have been derived in
the foregoing development andare oti13.nedby equations (32}, (33},
(39), .@ (40). For exsmple, after the first approxhnationhas been
obtained, the differential ~uation for the second may be found by
setting n = 2 in equation (32) and letthg k, r, m, and p a8sume

1
values in accordance with the form of F. After all the coefficients
of each harmonic on the right side have been gathered, the differential.
equation will have the form (33). The app~cation of the formula (39]

2.2
Yielti the constants of the solution (40) in terms of the &j, ~j,

11 22

.

1

. . . are then lmown and sxe sufficient to determine the ~.i> ~fi, . . .
—“

if the foregoing process is repeated.

MAxIMuMVEIOXTY~AND

For flow over a profile symetric about

.

CONVERGENCE

the y-axis, the maximum
velocity increment occurs at the midchord. At the critical free-stream

—.. ‘. ———-. -___—_— ___...

.
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.

Mach nunber, the flow will be sonic at the mi~ord, and for higher
free-stream lkch numbers, a local supersonic region will develop..

Connected with the formation-of t~s region i= the question of
convergence of the series obtained from the iteration process to repre-
sent the maximum velocity increment. This question of convergence is
especially important because the max3mum velocity iqcrement is expected
to be the first velocity component at any point in the flowto diverge,
and this divergence signals the failure of the iteration process to
serve as a method of solution. If several terms of a series are known
and subsequent terms are assumed’to decrease in the same mannery an
est~te of the domain of convergence may be made a& follows: ~~ -

The kbnithg (%+0, x+ 0) perturbation velocity at the midchord

.,

.-

is asti of terms (equations (3)Y (15), and (30))

or

y+o

.
n

The ~ are seenby definition to depend only on the ~~

duce the effect of the shape of the body. The series (42)
if the limit of the ratio of successive terms is less than

,,

I .n+l,..... . ~-~ p; <;’-’ .

n+=’p-l:

....,..,.,. .... . -. ... ., .

(41)

(42)

which intro-

wi~. converge
lforal.1 h: ,

,..
,.’.

-—._._ .—. ——— –-———..——— —... .
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●

n-1

KZ = g.1.b. --& n~~ (43)

P

where Kz is the maxbnum value of the similarityprsmeter for which

convergence of the iteration process will occur.
.

The so-calledpotential. limit Mach number, or free-stresm Mach
nmiber for which the solution diverges for any T, is defined by

or

For small
velocities may

8URFACE VELOCITI12S

disturbances such that the squares of
be neglected compared with unity$ the

ing perturbation velocity

Fx (X,o] =

a

or, in the x,y-plane~

on the ellipse is

-&Ft (O,t}

n

(44)

the perturbation
transformed limi.t-

(45)

Equation (45) will hold mly on that portion of the surface along which
J~l (figs. 5m36).

p
N
N
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Mach ntier at the midchord is given for the small per-
by equation (27) of reference 11:

~2-~=- P2 + m~ 9X (0,0) (46)

In a previous discussion concerning figure 2 it was seen that the
hyperbolic region of the limiting equation (7) represents very nearly
the region of supersonic flows for a perfect fluid. Therefore the
parabolic curve

.-l

(47)

can be used to outline the supersonic region or to find significant
points on it in the physical plane. Whether or not an iteration solu-
tion can correctly describe a supersonic flow may be questioned, for
as perfomed here the iteration procedure is essenti&lly the solution
of a set of elliptic equations. The applicationswhich follow, although
not answering this question directly, do suggest convergence of the
solution in the hyperbolic region.

For any thiclmess ratio z the critical Mach number, or lowest
free-stresm Mach number at which some point in the flow field becomes
sonic, is given by

rMz -
—=KC
B3

or

w
(1 - MJ3/2

(48)

APPLICATION To ImLITITc CYLINDER

The expression that describes the upper surface of an ellipse
whose major axis coincides withthe direction of ‘flowis

y= Tg(x) =~-ti :
., (49)

=Tsin.t ‘ ‘(s+0),.

. —.- ———. — —.-— ——.— -_ — —.. . _
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It follows from equation (27) that

1
F = Kc-s cos t (50)

Subsequent approximationsthrough the sixth have been calculated m
by means of the iteration process previously described. The coefficients

w
N

n n n n n n n
N

~~~ ~~~ ‘d ~j ad the ~j> ~d, ~j) =d Ohj calculatedbY

1

means of equations (33) and (39 are presented in table I in &trix
arrangement. From equation (41 ,

(pX (0,0) = – 1 +0.35237 K +0.36986# +0.51836~ -I-:(

0.83711 @ + 1.42014 @ + . . . ) (51)

For comparison, the maximum disturbancevelocity aE determined by
the first three approximations of the iteration solution herein des-
cribed is plotted (fig. 7) with the exact solution of Hs.ntzsche(ref-
erence 12). Hsntzsche’s iteration process is based on an expansion of
the stream function in powers of the thickness ratio. The agreement
between the two methods appears close enough to justify the calcula-
tion of higher appro~tions for olhining abetter estimate of the
potential limit Mach number.

An estimate is made in figure 8 of the lsrgest vslue KZ of the
similarityparameter for which the series for the madmum velocity
increment will converge: The broken line joins successive estimatqs
of K2 obtained by comparing terms by means of a ratio test described

in the section “MEUMUMVELOCITY INCREMENT AND COIWE13GEIVCE.”An
examination of the slopes of the segments of the line indicates that
the limiting ratio of these slopes, for large n, is about 1/2. If
it is assumed that these slopes continue to decrease in a ratio 1/2,
the greatest lower bound of the broken line curve can be calculated
by a geometric progression. The estimated greatest lower bound of the
broken line is then about Kz = 0.56.

That the solution converges even when some of the flow is super-
sonic (hyperbolic)is indicated in figure 9, which shows the contribu-
tion of each approximationto the maximum velocity increment for vary-
ing K. Supersonic flows lie to,the right of the parabolic curve and
the intersection of this curve and the sixth approximationmarks the
value of the parameter K at which the transition from totally sub-
sonic flows to psrtly supersonic flows occurs. This transition

.

— —— –.—._ -—.-—-— ._._
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.

.

point, & ~ 0.395, is also very evident in figure 10 as the intersection
of the curves, for several values of ~, of the locsl Mach number at
midchord (equations (42) end (46)).

The surface velocity on the ellipse for three values of K is
presented in figure Il. The parabolic line, equation (47), is included
in each case for comparison. Thus in figure n(a) a12 velocities are
subsonic, whereas figure-I.l(b) (K = 0.4) shows a partly supersonic
flow. This is in agreement with the previous calculation showing
transition from subsonic flow to supersonic flow at ~ = 0.395. The
longitudinal extent of the synmetric supersonic region is seen to be
about 1/10 chord, based on six approxbmtions. -Thelast of this series
of figures (fig. KL(c)) is for a value of K near KZ. Although the

series for the velocity increment may be converging, it is evident
that nesr the midchord the uncalculated a~roximdions we not negl3.g-
ible for this value of K. The width of the supersonic region is
greater than the extent of the region of accuracy of the calculations.

Curves of critical Mach number and potential 13mit Mach number
against thickness ratio have been plotted in figure 12 using equa-
tions (48) and (44), respectively.

APPLICRITOITTO KAPLAN BUMP

As a second example, the iteration process is applied to the cal-
culation of noncirculatory flow past a Kaplan section; this problem
has been treated in an exact manner to three approximationsin refer-’
ence 4. The Kaplan section has{no stagnation points (fig. 5) so that
nowhere is the boundary condition singular. Its parametric repre-
sentation is (reference4),

x= Cos t 1

) (52)

Y =; (3 Sint - sh3t)

Application of equation (27) yields

i = ~ (3e-s
-3s

cos t-e Cos 3t) (53]

The second,
according tb the

and are recorded
n

third, and fourt% appro~tions have been calculated
procedure given in the section “HIGHER APPROXIMATIONS”

in table
n

Nhj. The consttits ~j,

terms of the &.Yferen{i@.

n n
II as arrays of the constants ~j, ~j, and
n n

%j~’md Chj represent the nonhonmgeneous

equations (33).

.—. .—- .-.—.— —— .—. ——._ .—. — .——— . . . ...-— —. ..—. —.———.- ——. .



The chordwise perturbation-velocitydistribution at the surface is
plotted in figure 13 for comparison with the result of Kaplan (refer-
ence 4) for %= 0.10 and ~ = 0.75. The agreement is probably suf-

ficient from aprac-tical stand@nt to justify the labor-saving limit-
ing processes that have been made in the iteration process.

An estimate of the 13miting value of the pmmeter K for which
the series for the ~ velocity incr&ment will converge is made
in figure 14, where the ratios of successive coefficients in the series
for the ma&mum velocity increment are plotted for the first four terms.
The series for (Qx)m to four appro-tiom is calculated from
equation (41) to be

.

((Qx)m = ; ; )+ 0.81762 K + 1.15715 ~ + 2.11564 ~ + . . . (54)

An analysis similar to that employed on the corresponding series for
the elliptic cylinderindicates that the series (56) will converge for
values of K < 0.387.

me value K2 = 0.387 is considerably above the value of K for

which the flow becomes sonic at the midchord, as given in figure 15 by
the intersection of the fourth approdmation curve and the parabolic
curve. The converging nature of the successive approximations indi-
cates that this value of ~ = 0.270 willbe lowered only slightly
by increased accuracy fromhi@er-order terms.

The variation of the local Mach nmiber correspondingto the maxi-
mum velocity ’incrementhas been calculated by means of equation (46)
and is plotted Against the similarity parameter for several values of
free-stream llachnuniberin figuxe 16. The calculations sre based on
four approxhnations. The velocity ticrement on the surface of the bump

- is plotted aa a function of distance along the chord in figure 17. Of
these, figure 17(a) shows the only completely.subsonic flow. In fig-
ure 17(b), ~ <K= 0.3 <Kz. Hence the flow is everywhere convergent,
but near the midchord there is a smaL1.supersonic region representedby
those values of (Fx)_ above the parabolic curve. For figure 17(c),
the similarityparameter is chosen slightly larger than the estimated
maxhum for convergence,Kz, as obtained from equation (43) and fig-
ure 14; and, although successive appro-tions still decrease monoton-
ically, the curves of figore 17(c) should not be expected ultimately
to converge.

Pigure 18 shows the critical Mach number 1% and the potentisl
33.mitMach number Mz as functions of thickness ratio. For compari-
son, 1% and MZ as computed by Kaplan (reference4) are included.

The present calculations indicate that isentropic mixed flow is
restricted to a considerably smaller range of Mach number.

.,
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COIWLUDING REMARIH . .

An iteration procedure similar to that employed in the Ackeret-
Prandtl type Qrqcedure has been uti13zed in the calculation of the
symmetric-typetransonic potential flow for an elliptic cylinder and
a Kaplan section. In order to obtain an est~te of the region of con-
vergence of this type of solution, the work has been carried through
six approximationsfor the elliptic cylinder and through four approxi-
mations for the Kaplan section.

The results in~cate that the iteration soltiion converges for a
range of the similarity parameter for which supersonic regions exist
in the flow field. For these hyperbolic regions, the non13near term
of the potential equation is not, strictly speaking, small comp=ed
wtth either term of the Laplacian. The iteration yrocedure presented
herein may therefore be applicable to a greater range of disturbance
velocities than would be indicated by 33ssmethod of formulation, in
which the nonlinear term is considered a perturbation on the Laplacian.

The results have been presented in conformity with the transonic
Similuity law. The essential characteristicsof a flow may then be
presented in a simple and direct manner by classifyf.ngthe flow with
respect to significantvalues of the similarity parameter, for example,
the critical and potential limit values.

Lewis Flight Propulsion Laboratory
National Adtisory Committee for Aeronautics

Clevelsnd, Ohio, June 26, 1951

.
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APPlmDrx - s-YmoLs

The-following s@ols are used in

A,B,C

C*

F

f

!3

g.1.b.

()
x,q

J—s,t

K

%

KZ

L,M,H,O

M

%

Ml

%

n

P

9.

S,t

u

X,y

P

constants

critical velocity

perturbation potential

function of x,q

thickness distribution

greatest lower bound

this report:

in ~-plane

along chord

rminant, or Jacobianfunctional dete

trsmsonic similarityparsmeter

critical value of similarity~arameter

potential Limit of similarity parameter

constants, identified by superscripts and

local Mach number

criticsl Mach number

potential limit Mach number

free-stream Mach nwiber

number of appro-tions

particular integral

function of s

elliptic coordinates

free-stream velocity

cartesian coordinates

d=

,

subscripts

.

.
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‘M

N
N
4

Ui
T

9

W,p,cl

Subscripts:

X,y,ll,s,t

h~~~k~m>pjr~v

superscripts:

?b,n,v

1.

2.

3.

4.

5.

ratio of specific

Laplacian

coDEtqt

heats

transfom.ed y-coordinate

thickness ratio

perturbation potential

constants, identified by subscripts

indicate psrtial derivatives

summation indices

number of approximation

25

Wsm& Chi-Teh: Variational Method in the Theory of Compressible
Fluid. Jour. Aero. Sci., vol. 15, no. I.1,Nov. 1948, pp. 675-685.

Liepmaan, Hsns Wolfgang, andpuckett, Allen E.: Introduction to
Aerodynamics of a CompressibleFluid. John Wiley & Sons, Inc., ‘
1947.

Ackeret, J.: her Luft-lm~e bei sehr grossen Geschwindigkeiten
insbesonderebei ebenen Str&nuugen. Helvetica l?hysicaActaj
VO1. I, fast. 5, 1928, P. 301-322.

Kkplan, Carl:
face. IWlf!A

Perl, W., and
Application

The Flow of a Compressible Fluid past a Curved Sur-
Rep. 768, 1943.

Klein, I@lton M.: Theoretical Investigation and
of Transotic Similarity Law for Two-DimensionalFlow.

NACA!IW 2191, 1950.

— ——--- ... . . ---- ———-— —— -—



l?lACATN 251126

6.

7.

8.

9.

e

von *, Theodore: The Simi.lsrityLaw of Trsnsonic Flow. Jour.
l@th. Phys., VO1 XXVI, no. 3, Oct. 1947, pp. 182-190.

Sears, W. R.: Tr~onic Potential Flow of a CompressibleFluid.
Join. Appl. phys., VO1. 21, no. 8, Aug..l95O, PP. 771-778.

Kuo, Yun.g-H@ : On the Stability of be-Dimensional Smooth !?tmnsonic
Flows. Jour. Aero. SCi., TO1. 18, ~. 1, JSJI. 1951) PP. 1-6.

Beavan. J. A., ~ ~de, G. A. M.: _les of press~e Distribu-
tio~ at Co~ressibi~ty Speeds on K! 1250. R. & M. No,.2056,
British A.R .C., 1942.

10. Beavan, J. A., Hyde, G. A. M., and Fowler, R. G.: Pressme and
Wake Measurements up to Mh IWmiber0.85 on an W 1250 Section
with 25 per cent Control. R. & M. NO. 2065, British A.R.C.,
1945.

U. Perl, William: Calculation of Transotic Flows P’astThin Airfoils
by an InteSal Method. NACA TN 2130, 1950.

12. Han~zsche, W. : Die Prsndtl-Glauertsche~~erung als Grundlage
fur eti Iterat~onsverfahren zur Berechnung kompressibler
Unterschallstronmngen. Z.f.a.M.M., Iii.23, I&. 4, Aug. 1943,
S. 185-199.

.

.

——— —. ..— —. .



.

!

NACA TN 2511 27

.

1 -0.50QOQ

3 0.75000

5 -0.25000

TKBLEI -

.22=0
j

TA&II-

(b): = = 1.0

&3ECONDAPPROK13&Y!?IOliFOR ELElEZ3 .

N-J-

*

1 0.33333

3 --

5 ---

TABmmI - ‘ITURDAPPRO-IOlf FOR EIUPSE

L1
*

0.225001 --- I 0.M595
-0.67500 --- -0.04167

5 -0.16667 -0.15238 0.67500 --- 0.08929
I I I I I

7 --- 0.53095I-0.22500I --- 1-O.19118
I I I I I

9 --- 1-0.05952I --- I --- I 0.02381

h
2 3 4 5 6 7 9

1 0.23084 -Oklllll -0.02321 O.l!mo --- 0.00017 --- ---

3 --- -0.10000 0.1.5018-0.09643 --- -o.oo154 --- ---

5 --- 0.00794 0.07202 -0.07500 0.00388 0.00812 --- ---

7 --- —- -0.01327 0.00682 --- 0.00595 -0.00331 ---

9 --- A-- 0.00083 --- --- -0.00053 --- 0.00007

v

———.—_. _–. _-_—



28 - NACA TN 2511

.

TAElxIv- FmErm Ammmummm mImKE

“g
4
a

E
3

h

1

s

5

7

9

U

ls

310

0.W327

2 5

0.092ES

-&w

0.S7M2

4 s

3
7 8

0.024s6 6.@179

-0.02820 -0.KIP35

0.CE3J5 0.-

0.269s6 -0.07W5

-o.luza o.cWe4

O.w -o.ola95

..O.W464 —

9

-0.E301

.0.31.663

o.19w4

0.04995 0.01.2M —

3
-0.0XW7”

o.cez24

-0.W132

0.02262

-0.zlm

o.on60

o.02s!i4-0.CQSS3 —

—0.04s49

-0.07433

O.aiazs

—

-o.z6551

0.-7

-0.7sss9

0.49494

-0.CW9S

0.0KS2

0.W27E

-0.s3s47

O.ou!m

— —

— .—

3-0.0W220.KW9

.-—-

— — — — —

(-b)iw

El
34

h

1 0.16250

s -0.48749

.5 0.4s749

7 -o.la2so

“
.

B
31

h

1 o.22Aaa

3—

5 --

7—

9—

11—

12—

2 s 4 s

-0.02?s2 O.olole -0.W14

-o.wola o.oean -0.QXZ94

0.07ZU3 -cLc6m 0.0U3S4

-o.o1328 -0.04s47 o.@3s73

O.m 0.0152S -0.01S77

-— -o.mm O.ax-ss

— O.axoa —

6 7

B
8 9 10

-o.m — -o.mw.l

O.m -- O.(xaa

-o.021e8 -- -0.CFXO1

0.W942 — O.m

0.0U718 -o.c.om -o.m

-o.ax8E -- -o.ana

— — 0.-

11 12 ! u

I

-0.0s547
—.

-0.CA2

0.0W52

—

—

—

—

-o.m -o.cmlf

O.’wuu

-o.o12w

-0.01M2

O.cnla

-o.m15-2

-o.olEa

=E#=0.=

—

-o.axss

O.w

-am
I I

-. — -o.m

J ~
h 4 5 .s 7

1 .— -o.cms7 -- — —

3 -0.14445 O.ls%?a — — --

5 -- 0.lC.SS3-0.1C6W — —-

7 — 4.W4S5 — —- o.&39sl

=s=

—. ——— —.. —.- ..— — ..- —.. . . .



, , 2275 , ,

I
I

I
I

I

TABLBv- FnTHmRxQ6A!nmm ELIJPfm

5 -0.15096 -1.18221 -1.96026 1.18749

7 --- 0,54470 2.49443 0.2126.9

I I I I

9 I --- I-13.~107 I-1.32017 I-2.072~

11 I --- I --- I 0.283.25 I 1.67599

13 --- --- -0.01647 -0.46297

15 --- --- --- 0.C62.36

17 --- --- --- -0. CQ327

“31718191 10I11I12IDI14

0. OIJ.36 0. mzs.s 0. M1531 o, 032cM O.mlsm 0. CKXC4 (J<@3J2B --- ---

-0.3J2313 -0.0Z631 0.02466 -o.03aM -0, W391 O,ml -0. W366 --- ---

0.7.5422 0.01647 -0.27262 0.16464 0.02092 0.02?00 o.@lK!i36 --- ---

-2.59319 0.34671 0.49167 -0.lmz -0. CE8S9 -0.011M5 -0. C13175 --- ---

3.52376 +.63624 -o,11714 -0,21780 0.1M70 0.00W5 o.@J719 --- 0. CCW13

-1.9M&5 0.33465 -0.34649 0,43170 -0.09069 o.m799 -o. o1371 --- -0. oaou

0. S763.9 -0.03630 0.2-W39 -0.2CB90 0.02682 -0.01EK37 0.01.I-53 --- 0. =,6

-o,02m2 --- -0, CM7M 0.01972 --- O.m -0. oa?m --- -0,00319

-- --- O.’kzw --- --- -0.0 CCJ79 --- --- o,c0xL5

(b):M

1
.

h 5 6 7 6

I I I I I
1 0.4=4 0.14341 0,19737 I --- I 0, CC516

1 I I

3 1.3CW2 0.0s402 -1. CE5669 --- -0.04010

5 -1. 3cc@2 -1.32955 2.24s54 --- 0.17670

7 / 0.4s34 I 2.51.317 I-2.04w I --- I-0,341.06 I

9 --- -1.3M44 0.65946. --- 0,26866

u -— 0. I.I.640 --- --- -o. b9735

-’-w9=’

v

!s

.>
IN
C9



i ~
h

2 3 4 5 6 7 E 9 10 U 12 1.5 14 28 17

1 0.28620 -011WM4 -Oaa=al -o.maza o.- O.m O.WCIM O.mlo O.oww O.cicw O.oita O, COCHM -- -- --- -- >

s --- -0, CW?4 o,2144@ o.- -0.04370 -o. - -0. m 0. CQ3M 4 ,OLXIS -0.mo 0,0WU3 4.04X0 -~ , -- --- ---

6 ..- 0.W719 0.07399 0,0W41 -0. w O! EW..%3 O*KKK9 -o. octu o.tce34 0.= 0.- o,m -- -- --- —

7 ..- .. . -0,01.S88 -aoo724L O.muo 0. C8422 -o.ceTs2 o.uMa? -0 .W478 -0. wlzl -o. wIn.4 4. CXWX? -- -- -— ---

e ..- --- 0.0X35 O,ozokl 0.0SS48 -0, !77440 O.olfam 0,=6 -0.0KS2 0.- O.uxeu O.mzl -- o.m -- --

21 -- —- --- -,03240 -o, o17?s 0, CQ278 -0.03L96 O,cma -0.01079 0.W433 0.CW76 -Q. m --- -o, cex’o — ---

2.2 -- — -- O.c.’xiz o,Rn3E -o. o12e3 0,- “-O.CUM 0.-7 -o. a’cw O.m -0. - O.mlo, O.ml -- ---

Is’ — -- --- --- -o, ctazl O,mls — o,lxlx$3 -o, m14 -- -0.allx O.ccen --- ‘ O.ocwl -o, m ---

17 -- —- -- --- O.cccol --- --- -o, ml --- —- O,wx.1 -- --- -o. m --- 4,axix

(A) : ~ v

7 — -o. ms13 -o. cw3a O. 1B737

s — — O.olwa ---

u — — -0. - -—

7 8 9 10 2.2

1 1 1 I



.

llACATIV2511

.

31

2
N
N

./

.
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TABIElvI - SIXCIIAPPROXIMATION FOREZIZPSE- continued
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